Title: | Isotonic Regression on Survival Analysis |
---|---|
Description: | Nonparametric estimation on survival analysis under order-restrictions. |
Authors: | Yunro Chung [aut, cre]
|
Maintainer: | Yunro Chung <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.3.0 |
Built: | 2025-01-24 02:39:51 UTC |
Source: | https://github.com/cran/isoSurv |
Nonparametric estimation on survival analysis under order restrictions
Package: | isoph |
Type: | Package |
Version: | 0.3.0 |
Date: | 2023-9-1 |
License: | GPL (>= 2) |
Yunro Chung [aut,cre] Maintainer: Yunro Chung <[email protected]>
Yunro Chung, Anastasia Ivanova, Michael G. Hudgens, Jason P. Fine (2018), Partial likelihood estimation of isotonic proportional hazards models, Biometrika, 105(1), 133-148. doi:10.1093/biomet/asx064
Nonparametric estimation of monotone baseline hazard and monotone covariate effect functions in the proportional hazards model.
disoph(formula, bshape, data, maxiter, eps)
disoph(formula, bshape, data, maxiter, eps)
formula |
formula object: response ~ iso( |
bshape |
direnction of the baseline hazard function ( |
data |
data.frame includes variables named in the formula argument. |
maxiter |
maximum number of iteration (default is |
eps |
stopping convergence criteria (default is |
The disoph function computes () in the isotonic proportional hazards model, defined as
based on the full likelihood, where is a monotone increasing (or decreasing) baseline hazard function,
is a monotone increasing (or decreasing) covariate effect function,
is a univariate variable, (
) is a set of covariates, and
) is a set of corresponding regression parameters. It allows to estimate
only if iso(
,shape="increasing") is removed in the formula object. Likewise, It allows to estimate
only if
is removed in the formula object. Using the nonparametric maximum likelihood approaches, estimated
and
are right continuous increasing (or left continuos decreasing) step functions. Compared to the standard partial likelihood approach, the full likelihood approach in the disoph function additionally use shape-information on
, resulting in more efficient estimators especially for a finate sampe size.
For the anchor constraint, one point has to be fixed with to solve the identifiability problem, e.g.
for any constant
.
is called an anchor point. By default, we set
as a median of values of
's. The choice of anchor points are not important because, for example, different anchor points results in the same hazard ratios.
A list of class fisoph:
iso.bh |
data.frame with |
iso.cov |
data.frame with |
beta |
estimated |
conv |
algorithm convergence status. |
iter |
total number of iterations. |
Zk |
anchor satisfying estimated |
shape.bh |
order restriction on |
shape.cov |
order restriction on |
Yunro Chung [auth, cre]
Yunro Chung, Double Isotonic Proportional Hazards Models with Applications to Dose-Finding Studies. In preparation.
#test1 test1=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4) ) disoph.fit1=disoph(Surv(time, status)~iso(z,shape="inc"),bshape="inc",data=test1) print(disoph.fit1) plot(disoph.fit1) #test2 test2=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4), trt= c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0), x= c(1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6) ) disoph.fit2=disoph(Surv(time, status)~iso(z,shape="inc")+trt+x,bshape="inc",data=test2) print(disoph.fit2) plot(disoph.fit2)
#test1 test1=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4) ) disoph.fit1=disoph(Surv(time, status)~iso(z,shape="inc"),bshape="inc",data=test1) print(disoph.fit1) plot(disoph.fit1) #test2 test2=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4), trt= c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0), x= c(1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6) ) disoph.fit2=disoph(Surv(time, status)~iso(z,shape="inc")+trt+x,bshape="inc",data=test2) print(disoph.fit2) plot(disoph.fit2)
attributes the covariate with respect to the name, direction, anchor point, and class.
iso(z, shape)
iso(z, shape)
z |
a univariate covariate. |
shape |
a direction of |
Internal function. The iso function attributes the covariate for its name, shape , anchor point and class, where the anchor point is set to a median of
's, and class is set to "iso covariate"
The value with attribution of its name, shape and median anchor point.
Yunro Chung [cre]
Nonparametric estimation of a monotone covariate effect under the proportional hazards model.
isoph(formula, data, maxiter, eps)
isoph(formula, data, maxiter, eps)
formula |
a formula object: response ~ iso( |
data |
data.frame includes variables named in the formula argument. |
maxiter |
maximum number of iteration (default is |
eps |
stopping convergence criteria (default is |
The isoph function estimates (,
) in the isotonic proportional hazards model, defined as
based on the partial likelihood with unspecified baseline hazard function , where
is a monotone increasing (or decreasing) covariate effect function,
is a univariate variable,
is a set of covariates, and
is a set of corresponding regression parameters. It allows to estimate
only if
is removed in the formula object. Using the nonparametric maximum likelihood approaches, estimated
is a right continuous increasing (or left continuos decreasing) step function.
For the anchor constraint, one point has to be fixed with to solve the identifiability problem, e.g.
for any constant
.
is called an anchor point. By default, we set
as a median of values of
's. The choice of anchor points are not important because, for example, different anchor points results in the same hazard ratios.
A list of class isoph:
iso.cov |
data.frame with |
beta |
estimated |
conv |
algorithm convergence status. |
iter |
total number of iterations. |
Zk |
anchor point satisfying |
shape |
Order-restriction imposed on |
Yunro Chung [aut, cre]
Yunro Chung, Anastasia Ivanova, Michael G. Hudgens, Jason P. Fine, Partial likelihood estimation of isotonic proportional hazards models, Biometrika. 2018, 105 (1), 133-148. doi:10.1093/biomet/asx064
# test1 test1=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4) ) isoph.fit1=isoph(Surv(time, status)~iso(z,shape="inc"),data=test1) print(isoph.fit1) plot(isoph.fit1) # test2 test2=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4), trt= c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0) ) isoph.fit2=isoph(Surv(time, status)~iso(z,shape="inc")+trt, data=test2) print(isoph.fit2) plot(isoph.fit2)
# test1 test1=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4) ) isoph.fit1=isoph(Surv(time, status)~iso(z,shape="inc"),data=test1) print(isoph.fit1) plot(isoph.fit1) # test2 test2=data.frame( time= c(2, 5, 1, 7, 9, 5, 3, 6, 8, 9, 7, 4, 5, 2, 8), status=c(0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1), z= c(2, 1, 1, 3, 5, 6, 7, 9, 3, 0, 2, 7, 3, 9, 4), trt= c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0) ) isoph.fit2=isoph(Surv(time, status)~iso(z,shape="inc")+trt, data=test2) print(isoph.fit2) plot(isoph.fit2)